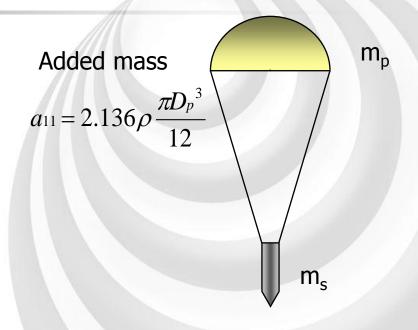

Sub-scale, High-altitude testing of parachutes

A low-cost methodology for the characterisation of parachutes for planetary entry

John Underwood, Steve Lingard & **Arrun Saunders**Vorticity Ltd
Oxfordshire, UK
Arrun.Saunders@vorticity-systems.com

Why test at high altitude?

Why test at high altitude? - Inflation


- Full scale
 - Equivalent density and velocity gives similar load & stress
- Sub-scale
 - Need to match Mach number
 - Low density allows tests on lightweight models
 - Stiff materials affect inflation characteristics

	Earth sea level	Mars @ 8km
Mach 0.5	17,700 Pa	48 Pa
Mach 2.5	443,000 Pa	1200 Pa

Why test at high altitude? - Dynamics

- Parachute
 - Moves through atmosphere
 - Atmosphere entrained
 - Effective mass increased
 - "Added mass"
- System CG moves
 - Earth low level
 - CG close to parachute
 - Mars
 - CG close to payload
- Stable parachute: No change
- Unstable parachute: Problems

Do (m)	Earth (kg)	Mars (kg)
1	0.22	0.00
3	5.82	0.04
10	215.39	1.58
30	5815.63	42.73

Historic Testing

- PEPP / SPADE / BLDT
 - NASA
 - 1960's
- Huygens SM2
 - ESA
 - **1995**
- MSL
 - NASA
 - **2004**

PEPP / SPED / SHAPE / BLDT

- Planetary Entry Parachute Programme
- Supersonic Planetary Entry Decelerator programme
- Supersonic High Altitude Parachute Experiment
- Balloon Launched Decelerator Tests
- Precursors for Viking mission
 - 20 Tests in total
 - Parachutes 7.7m to 26m diameter
 - Payload mass 100 to 250 kg (+ one of 1200 kg)
 - Rocket launch or balloon / rocket launch
 - Expensive!

Huygens SM2

- End to end test of ESA Huygens parachute system
 - 300 kg test vehicle
 - **37.5** km
 - Free-fall to Mach 0.8
 - Four-parachute test
 - Pilot Chute
 - Mach 0.8
 - Main Parachute
 - Mach 0.8
 - Stabilising Drogue
 - Mach 0.1
 - Recovery parachute

MSL

- Testing of 33.5 m ringsail parachute originally proposed for MSL second stage
 - 0.34 million m³ He balloon hoisted payload to 36 km
 - deployment after 21s freefall at Mach 0.54 and 148 Pa
 - Payload mass at release 980 kg including the parachute system
 - 4 tests conducted only one fully successful: 2 parachute failures due to inadequate deployment control, one balloon failure
 - On successful test high altitude instability of the low porosity ringsail parachute was evident

Common features

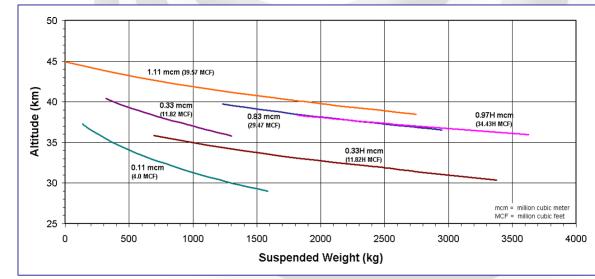
- Size
 - Full-scale
 - ~10 m parachutes
 - 100 kg+ payloads
- Free-fall tests
 - Cost: € x,000,000
 - Complexity: High
 - Dedicated test vehicle + avionics
 - High reliability due to cost of test
- Boosted tests
 - Cost: € x0,000,000
 - Complexity: Very high
 - Additional rocket + GNC requirements

Cost drivers

- Payload
 - Heavy
 - Transport & Recovery
 - High loads
 - Challenging mechanical design
- Balloon
 - Large, zero-pressure balloon required
 - ~1,000,000 m³
 - Helium: ~€2/m³ @STP
- Complexity
 - Radar transponders + beacons
 - Redundant cut-down systems

Balloon technology

- Zero pressure
 - Used for all full-scale parachute tests
- Latex
 - Meteorological balloons


Zero pressure balloons

- Operation
 - Polythene envelope
 - Open at bottom
 - Gas expands during ascent
 - Gas vents from bottom at cruise altitude

ANTARCTIC BALLOON LAUNCH (NASA)

- Capabilities
 - Masses up to 3500 kg
 - Altitude up to 45 km
- Disadvantages
 - Expensive
 - Redundant cut-downs

Latex Balloons

- Operation
 - Latex envelope
 - Sealed
 - Gas and balloon expand during ascent
 - Balloon bursts at mechanical limit
 - No cut-down required
- Capability
 - Masses up to 15 kg
 - Altitude up to 40 km
- Disadvantages
 - Small payload

Comparison

Launch Site

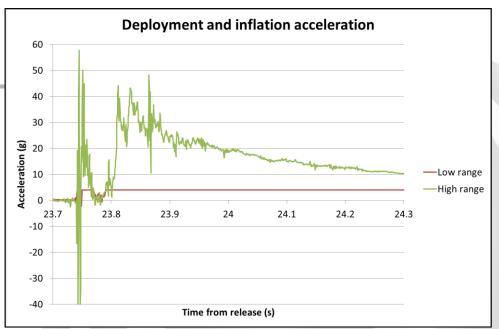
GSE

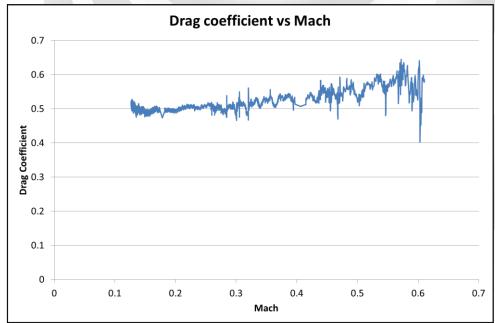
Gas

Payload

- Structure
- Test Parachute (up to 2.5m)
- Deployment mechanism
 - Spring drogue
 - Pyrotechnic release mechanism
- Instrumentation
 - Accelerometers (3 axis)
 - Rate gyros
 - Magnetometer
 - GPS
 - Pitot & Static pressures
 - Data recorder
 - Camera (300 fps)

Low-speed, high altitude test




Low-speed, high altitude test

Mach 0.7 flight

- High subsonic speed
- All data measured
- Inflation profile deduced
- Cd(Mach) calculated
- All hardware recovered
- Video needs work

Mach 0.7 flight video

Mach 0.7 flight video (slow)

Lessons learned

- High altitude, sub-scale tests are feasible
- COTS components are compatible with environment
- COTS cameras not qualified for 100g acceleration

Future Plans

- High altitude static-line deployed tests in progress
- Campaign of six tests at Mach 0.8 planned for spring 2013

Questions

